
Fault-Tolerance for Matrix and Signal Processing Applications

Daniel S. Katz
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California

Many applications are composed of a series of linear operations. In particular, the science data
processing applications developed as part of NASA’s Remote Exploration and Experimentation
REE Project make heavy use of linear algebra and signal processing routines. The REE
applications also are generally parallel programs, as multiple processors are needed to keep up
with incoming data and respond to real-time events.

The goal of REE is to move ground-based supercomputing to space, and to enable new science
to be performed on these supercomputers. REE is not willing to pay the power-performance
penalty required when using radiation-hardened processors, and thus seeks to fly COTS
components. However, running these processors in the galactic cosmic-ray environment found
away from the Earth means that the processors will be subjected to transient faults. This paper
discusses a number of the methods that have been developed, implemented, and tested by REE to
allow these portions of these application to detect and possibly correct transient faults. These
methods fall into the Result Checking subcategory of Algorithm-Based Fault Tolerance (ABFT,
K. Huang and J.A. Abraham, “Algorithm-based fault tolerance for matrix operations,” ZEEE
Trans. on Computers, 33(6):518-528, 1984, and P. Prata and J.G. Silva, “Algorithm based fault
tolerance versus result-checking for matrix computations,” Proceedings of the Twenty-Ninth
Annual International Symposium on Fault-Tolerant Computing, pp. 4-1 1, 1999.) These methods
can also be used to detect faults in many other situations, including any system with un-reliable
hardware or network connections.

The routines that have been developed allow maintaining the same APIs as the standard versions
of the routines. The fault-tolerance may either be hidden from the programmer, or exposed if
greater control is desired. For REE, these APIs include BLAS (http://www.netlib.org/blas/),
LAPACK (http://www.netlib.org/lapack/) , ScaLAPACK (http://www.netlib.org/scalapack/),
PLAPACK (http://www.cs.utexas.edu/users/plapacM) , and FFTW (http://www.fftw.org/).
While VSIPL (http://www.vsipl.org/) was not addressed by the libraries which have been
implemented, this paper will discuss how this might be done (for general purpose processors), as
well as providing examples of the current libraries, the current applications, and use of the
libraries within the applications. The specific routines that have been protected include parallel
forward and inverse FFTs, all single-processor BLAS3 operations, and parallel matrix-matrix
multiplication, matrix inverse, LU decomposition, and SVD. Adding protection to the equivalent
VSIPL routines would be almost trivial (assuming source is available, such as for the reference
implementation or for a library developer), and adding protection to some other VSIPL routines,
such as QR and Cholesky decompositions, would be fairly simple. The result checking routines
take advantage of algorithms which perform a large number of operations on the data, and design
checks which use far less operations. For example, a check on an FFT is O(n) while the FFT is
O(n log n), and a check on a matrix-matrix multiply is O(n2) while the multiply is O(n3). Our

http://www.netlib.org/blas
http://www.netlib.org/lapack
http://www.netlib.org/scalapack
http://www.cs.utexas.edu/users/plapacM
http://www.fftw.org
http://www.vsipl.org

experience has been that these checks add overhead of 10-20% to the calculations. For this
reason, VSIPL’s scalar and vector operations cannot be protected by these means, as adding an
O(n) check to a vector operation which is itself O(n) is not worthwhile, since it is simpler to just
repeat the vector operation and see if the results are the same. Thus, the overhead for scalar and
vector operations is approximately 100%. However, the vector operations are also faster than the
matrix operations, and it has been out experience that they require a smaller fraction of the
computer cycles, as least for the REE applications. This means that they are less likely to be
affected by faults.

This paper also will discuss how one can take advantage of the memory hierarchy of modern
systems in choosing how to implement fault detection. As shown in the automated ATLAS
(http://www.netlib.org/atlas/) package, an optimized matrix-matrix multiply routine should be
careful to first choose how to perform operations within the floating point and integer units on
the processor, then how to use L1 cache, then L2 cache, etc. The tradeoffs of implementing fault
detection at these levels will be discussed.

http://www.netlib.org/atlas

